skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laurens, Roy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many VoIP systems, Voice Activity Detection (VAD) is often used on VoIP traffic to suppress packets of silence in order to reduce the bandwidth consumption of phone calls. Unfortunately, although VoIP traffic is fully encrypted and secured, traffic analysis of this suppression can reveal identifying information about calls made to customer service automated phone systems. Because different customer service phone systems have distinct, but fixed (pre-recorded) automated voice messages sent to customers, VAD silence suppression used in VoIP will enable an eavesdropper to profile and identify these automated voice messages. In this paper, we will use a popular enterprise VoIP system (Cisco CallManager), running the default Session Initiation Protocol (SIP) protocol, to demonstrate that an attacker can reliably use the silence suppression to profile calls to such VoIP systems. Our real-world experiments demonstrate that this side-channel profiling attack can be used to accurately identify not only what customer service phone number a customer calls, but also what following options are subsequently chosen by the caller in the phone conversation. 
    more » « less
  2. null (Ed.)
    As the world becomes more interconnected and our lives increasingly depend on the cyber world, the increasing threat of cyberattacks and cybercrimes make it critical for us to provide better and practical training of the cybersecurity workforce. In recent years, cybersecurity competition has become one of the most effective and attractive way for educating and training college students or professionals. In this paper, we first systematically introduce in details the step-by-step procedure and technical knowledge on how we take use of the ongoing DoD cyber-range environment called Persistent Cyber Training Environment (PCTE) to set up cyber competition virtualization environment, configure and install operating systems and popular services with various well-representative vulnerabilities, and set up the participant’s access and scoring system. Then we introduce the cybersecurity competition successfully organized by us in I/ITSEC 2019 conference, and the experience and lessons learned from this real-world competition event. The technical details and knowledge presented in this paper could help other researchers and educators to set up their own cyber competition environment or event to better train the future cybersecurity workforce. 
    more » « less
  3. Online card transaction fraud is one of the major threats to the bottom line of E-commerce merchants. In this paper, we propose a novel method for online merchants to utilize disposable (“one-time use”) domain names to detect client IP spoofing by collecting client's DNS information during an E-commerce transaction, which in turn can help with transaction fraud detection. By inserting a dynamically generated unique hostname on the E-commerce transaction webpage, a client will issue an identifiable DNS query to the customized authoritative DNS server maintained by the online Merchant. In this way, the online Merchant is able to collect DNS configuration of the client and match it with the client's corresponding transaction in order to verify the consistency of the client's IP address. Any discrepancy can reveal proxy usage, which fraudsters commonly use to spoof their true origins. We have deployed our preliminary prototype system on a real online merchant and successfully collected clients DNS queries correlated with their web transactions; then we show some real instances of successful fraud detection using this method. We also address some concerns regarding the use of disposable domains. 
    more » « less
  4. Online merchants face difficulties in using existing card fraud detection algorithms, so in this paper we propose a novel proactive fraud detection model using what we call invariant diversity to reveal patterns among attributes of the devices (computers or smartphones) that are used in conducting the transactions. The model generates a regression function from a diversity index of various attribute combinations, and use it to detect anomalies inherent in certain fraudulent transactions. This approach allows for proactive fraud detection using a relatively small number of unsupervised transactions and is resistant to fraudsters' device obfuscation attempt. We tested our system successfully on real online merchant transactions and it managed to find several instances of previously undetected fraudulent transactions. 
    more » « less